Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Anal Chem ; 95(25): 9680-9686, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: covidwho-20244047

RESUMEN

Genetic tests are highly sensitive, and quantitative methods for diagnosing human viral infections, including COVID-19, are also being used to diagnose plant diseases in various agricultural settings. Conventional genetic tests for plant viruses are mostly based on methods that require purification and amplification of viral genomes from plant samples, which generally take several hours in total, making it difficult to use them in rapid detection at point-of-care testing (POCT). In this study, we developed Direct-SATORI, a rapid and robust genetic test that eliminates the purification and amplification processes of viral genomes by extending the recently developed amplification-free digital RNA detection platform called SATORI, allowing the detection of various plant viral genes in a total of less than 15 min with a limit of detection (LoD) of 98 ∼ copies/µL using tomato viruses as an example. In addition, the platform can simultaneously detect eight plant viruses directly from ∼1 mg of tomato leaves with a sensitivity of 96% and a specificity of 99%. Direct-SATORI can be applied to various infections related to RNA viruses, and its practical use is highly anticipated as a versatile platform for plant disease diagnostics in the future.


Asunto(s)
COVID-19 , Virus de Plantas , Humanos , ARN , Virus de Plantas/genética , Límite de Detección , ARN Viral/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Prueba de COVID-19
2.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: covidwho-20238646

RESUMEN

Rapid and sensitive detection of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for early diagnosis and effective treatment. Nucleic acid testing has been considered the gold standard method for the diagnosis of COVID-19 for its high sensitivity and specificity. However, the polymerase chain reaction (PCR)-based method in the central lab requires expensive equipment and well-trained personnel, which makes it difficult to be used in resource-limited settings. It highlights the need for a sensitive and simple assay that allows potential patients to detect SARS-CoV-2 by themselves. Here, we developed an electricity-free self-testing system based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) that allows for rapid and accurate detection of SARS-CoV-2. Our system employs a heating bag as the heat source, and a 3D-printed box filled with phase change material (PCM) that successfully regulates the temperature for the RT-LAMP. The colorimetric method could be completed in 40 min and the results could be read out by the naked eye. A ratiometric measurement for exact readout was also incorporated to improve the detection accuracy of the system. This self-testing system is a promising tool for point-of-care testing (POCT) that enables rapid and sensitive diagnosis of SARS-CoV-2 in the real world and will improve the current COVID-19 screening efforts for control and mitigation of the pandemic.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Autoevaluación , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos
3.
J Clin Virol ; 165: 105521, 2023 08.
Artículo en Inglés | MEDLINE | ID: covidwho-20233590

RESUMEN

BACKGROUND: European legislation defines as "near-patient testing" (NPT) what is popularly and in other legislations specified as "point-of-care testing" (POCT). Systems intended for NPT/POCT use must be characterized by independence from operator activities during the analytic procedure. However, tools for evaluating this are lacking. We hypothesized that the variability of measurement results obtained from identical samples with a larger number of identical devices by different operators, expressed as the method-specific reproducibility of measurement results reported in External Quality Assessment (EQA) schemes, is an indicator for this characteristic. MATERIALS AND METHODS: Legal frameworks in the EU, the USA and Australia were evaluated about their requirements for NPT/POCT. EQA reproducibility of seven SARS-CoV-2-NAAT systems, all but one designated as "POCT", was calculated from variabilities in Ct values obtained from the respective device types in three different EQA schemes for virus genome detection. RESULTS: A matrix for characterizing test systems based on their technical complexity and the required operator competence was derived from requirements of the European In Vitro Diagnostic Regulation (IVDR) 2017/746. Good EQA reproducibility of the measurement results of the test systems investigated implies that different users in different locations have no recognizable influence on their measurement results. CONCLUSION: The fundamental suitability of test systems for NPT/POCT use according to IVDR can be easily verified using the evaluation matrix presented. EQA reproducibility is a specific characteristic indicating independence from operator activities of NPT/POCT assays. EQA reproducibility of other systems than those investigated here remains to be determined.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reproducibilidad de los Resultados , COVID-19/diagnóstico , Sistemas de Atención de Punto , Técnicas de Amplificación de Ácido Nucleico
4.
Anal Chim Acta ; 1271: 341469, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: covidwho-20230823

RESUMEN

Traditional nucleic acid extraction and detection is based on open operation, which may cause cross-contamination and aerosol formation. This study developed a droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction, purification and amplification. The reagent is sealed in oil to form a droplet, and the nucleic acid is extracted and purified by controlling the movement of the magnetic beads (MBs) through a permanent magnet, ensuring a closed environment. This chip can automatically extract nucleic acid from multiple samples within 20 min, and can be directly placed in the in situ amplification instrument for amplification without further transfer of nucleic acid, characterized by simple, fast, time-saving and labor-saving. The results showed that the chip was able to detect <10 copies/test SARS-CoV-2 RNA, and EGFR exon 21 L858R mutations were detected in H1975 cells as low as 4 cells. In addition, on the basis of the droplet magnetic-controlled microfluidic chip, we further developed a multi-target detection chip, which used MBs to divide the nucleic acid of the sample into three parts. And the macrolides resistance mutations A2063G and A2064G, and the P1 gene of mycoplasma pneumoniae (MP) were successfully detected in clinical samples by the multi-target detection chip, providing the possibility for future application in the detection of multiple pathogens.


Asunto(s)
COVID-19 , Neoplasias , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/genética , Microfluídica , ARN Viral , Técnicas de Amplificación de Ácido Nucleico/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Fenómenos Magnéticos
5.
Anal Chim Acta ; 1251: 340998, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: covidwho-20230777

RESUMEN

Non-specific amplification is a major problem in nucleic acid amplification resulting in false-positive results, especially for exponential amplification reactions (EXPAR). Although efforts were made to suppress the influence of non-specific amplification, such as chemical blocking of the template's 3'-ends and sequence-independent weakening of template-template interactions, it is still a common problem in many conventional EXPAR reactions. In this study, we propose a novel strategy to eliminate the non-specific signal from non-specific amplification by integrating the CRISPR-Cas12a system into two-templates EXPAR. An EXPAR-Cas12a strategy named EXPCas was developed, where the Cas12a system acted as a filter to filter out non-specific amplificons in EXPAR, suppressing and eliminating the influence of non-specific amplification. As a result, the signal-to-background ratio was improved from 1.3 to 15.4 using this method. With microRNA-21 (miRNA-21) as a target, the detection can be finished in 40 min with a LOD of 103 fM and no non-specific amplification was observed.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos
6.
Arch Microbiol ; 205(6): 239, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2322409

RESUMEN

COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Control de Calidad
7.
Talanta ; 262: 124711, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2327278

RESUMEN

We presented a polyethylene glycol (PEG) enhanced ligation-triggered self-priming isothermal amplification (PEG-LSPA) for the detection D614G mutation in S-glycoprotein of SARS-CoV-2. PEG was employed to improve the ligation efficiency of this assay by constructing a molecular crowding environment. Two hairpin probes (H1 and H2) were designed to contain 18 nt and 20 nt target binding site at their 3' end and 5' end, respectively. In presence of target sequence, it complemented with H1 and H2 to trigger ligation by ligase under molecular crowding condition to form ligated H1-H2 duplex. Then 3' terminus of the H2 would be extended by DNA polymerase under isothermal conditions to form a longer extended hairpin (EHP1). 5' terminus of EHP1 with phosphorothioate (PS) modification could form hairpin structure due to the lower Tm value. The resulting 3' end overhang would also fold back as a new primer to initiate the next round of polymerization, resulting in the formation of a longer extended hairpin (EHP2) containing two target sequence domains. In the circle of LSPA, long extended hairpin (EHPx) containing numerous target sequence domains was produced. The resulting DNA products can be monitored in real-time fluorescence signaling. Our proposed assay owns an excellent linear range from 10 fM to 10 nM with a detection limit down to 4 fM. Thus, this work provides a potential isothermal amplification method for monitoring mutations in SARS-CoV-2 variants.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/diagnóstico , ADN/química , Bioensayo , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos
8.
Appl Microbiol Biotechnol ; 107(12): 3983-3996, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2314427

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.


Asunto(s)
COVID-19 , Humanos , Animales , Gatos , COVID-19/diagnóstico , SARS-CoV-2/genética , Sistemas CRISPR-Cas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
9.
Biosens Bioelectron ; 236: 115402, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2313386

RESUMEN

Rapid point-of-care diagnostics, essential in settings such as airport on-site testing and home-based screening, displayed important implications for infectious disease control during the SARS-CoV-2 outbreak. However, the deployment of simple and sensitive assays in real-life scenarios still faces the concern of aerosol contamination. Here, we report an amplicon-depleting CRISPR-based one-pot loop-mediated isothermal amplification (CoLAMP) assay for point-of-care diagnosis of SARS-CoV-2 RNA. In this work, AapCas12b sgRNA is designed to recognize the activator sequence sited in the loop region of the LAMP product, which is crucial for exponential amplification. By destroying the aerosol-prone amplifiable products at the end of each amplification reaction, our design can significantly reduce the amplicons contamination that causes false positive results in point-of-care diagnostics. For at-home self-testing, we designed a low-cost sample-to-result device for fluorescence-based visual interpretation. As well, a commercial portable electrochemical platform was deployed as a proof-of-concept of ready-to-use point-of-care diagnostic systems. The field deployable CoLAMP assay can detect as low as 0.5 copies/µL of SARS-CoV-2 RNA in clinical nasopharyngeal swab samples within 40 min without the need for specialists for its operation.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , ARN Viral/genética , Técnicas Biosensibles/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Prueba de COVID-19
11.
Comput Biol Med ; 161: 107027, 2023 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2319960

RESUMEN

The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics. This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning. This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the time-frequency domain, image processing techniques can be applied to achieve the reliable classification of the detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with 2D convolutional neural networks and helps gain significant performance improvement over neural networks trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30kB making it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent and rapid molecular diagnostics.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/diagnóstico , Redes Neurales de la Computación , ADN , Técnicas de Amplificación de Ácido Nucleico
12.
Analyst ; 148(11): 2573-2581, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2319237

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has promoted the development of nucleic acid diagnosis technology. Several platforms with isothermal amplification methods have achieved sensitive and specific detection of SARS-CoV-2. However, they still suffer from complicated operations, delicate instruments, and unintuitive signal output modes. Here, a system consisting of CRISPR Cas12a-based biosensors and commercial pregnancy test strips (CRISPR-PTS) was established for the point-of-care testing of SARS-CoV-2. The target viral nucleic acids were finally reflected on the test strips through four steps, namely sample pretreatment, RT-RAA amplification, CRISPR Cas12a reaction, and separation-free hCG detection. This CRISPR-PTS assay possessed an outstanding sensitivity of as low as 1 copy per µL for SARS-CoV-2 detection and showed an excellent specificity in distinguishing the SARS-CoV-2 pseudovirus as well as other SARS-like viral clinical samples. In addition, the CRISPR-PTS assay performed well in practical applications, with 96.3% agreement versus RT-qPCR in spiked samples. With the advantages of low reagent cost, simple operation procedure, and visible signal output, CRISPR-PTS assay was expected to provide a strong supplement in the prevention and early diagnosis of infectious diseases in resource-limited situations.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Pruebas de Embarazo , Femenino , Embarazo , Humanos , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , Pruebas en el Punto de Atención , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , ARN Viral/genética
13.
Biotechniques ; 74(4): 158-171, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2316281

RESUMEN

The recent cases of COVID-19 have brought the prospect of and requirement for point-of-care diagnostic devices into the limelight. Despite all the advances in point-of-care devices, there is still a huge requirement for a rapid, accurate, easy-to-use, low-cost, field-deployable and miniaturized PCR assay device to amplify and detect genetic material. This work aims to develop an Internet-of-Things automated, integrated, miniaturized and cost-effective microfluidic continuous flow-based PCR device capable of on-site detection. As a proof of application, the 594-bp GAPDH gene was successfully amplified and detected on a single system. The presented mini thermal platform with an integrated microfluidic device has the potential to be used for the detection of several infectious diseases.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Dispositivos Laboratorio en un Chip , ADN
14.
PLoS One ; 18(5): e0285861, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2315260

RESUMEN

A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.


Asunto(s)
COVID-19 , Orthomyxoviridae , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , ARN Viral/análisis
15.
Biosens Bioelectron ; 235: 115358, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2311698

RESUMEN

Accurate and rapid screening techniques on a population scale are crucial for preventing and managing epidemics like COVID-19. The standard gold test for nucleic acids in pathogenic infections is primarily the reverse transcription polymerase chain reaction (RT-PCR). However, this method is not suitable for widespread screening due to its reliance on large-scale equipment and time-consuming extraction and amplification processes. Here, we developed a collaborative system that combines high-load hybridization probes targeting N and OFR1a with Au NPs@Ta2C-M modified gold-coated tilted fiber Bragg grating (TFBG) sensors to enable direct nucleic acid detection. Multiple activation sites of SARS-CoV-2 were saturable modified on the surface of a homogeneous arrayed AuNPs@Ta2C-M/Au structure based on a segmental modification approach. The combination of hybrid probe synergy and composite polarisation response in the excitation structure results in highly specific hybridization analysis and excellent signal transduction of trace target sequences. The system demonstrates excellent trace specificity, with a limit of detection of 0.2 pg/mL, and achieves a rapid response time of 1.5 min for clinical samples without amplification. The results showed high agreement with the RT-PCR test (Kappa index = 1). And the gradient-based detection of 10-in-1 mixed samples exhibits high-intensity interference immunity and excellent trace identification. Therefore, the proposed synergistic detection platform has a good tendency to curb the global spread of epidemics such as COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Análisis Espectral , Técnicas de Amplificación de Ácido Nucleico/métodos
16.
Biosensors (Basel) ; 13(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2309398

RESUMEN

With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Bioensayo , Técnicas de Amplificación de Ácido Nucleico , Prueba de COVID-19
17.
Talanta ; 260: 124645, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2309092

RESUMEN

Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa , ADN Polimerasa Dirigida por ADN , Ácidos Nucleicos/genética , Ácidos Nucleicos/análisis
18.
Angew Chem Int Ed Engl ; 62(23): e202300663, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2308962

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising platform for nucleic acid detection. Regulating the CRISPR reaction would be extremely useful to improve the detection efficiency and speed of CRISPR diagnostic applications. Here, we have developed a light-start CRISPR-Cas12a reaction by employing caged CRISPR RNA (crRNA). When combined with recombinase polymerase amplification, a robust photocontrolled one-pot assay is achieved. The photocontrolled one-pot assay is simpler and is 50-fold more sensitive than the conventional assay. This improved detection efficiency also facilitates the development of a faster CRISPR diagnostic method. The detection of clinical samples demonstrated that 10-20 min is sufficient for effective detection, which is much faster than the current gold-standard technique PCR. We expect this advance in CRISPR diagnostics to promote its widespread detection applications in biomedicine, agriculture, and food safety.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Agricultura , Bioensayo , Nucleotidiltransferasas , Técnicas de Amplificación de Ácido Nucleico
19.
Talanta ; 258: 124476, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2308939

RESUMEN

Porcine epidemic diarrhea (PED) is a serious disease requiring a simple and accurate detection method. Accordingly, this study developed a novel, ultrasensitive photoelectrochemical (PEC) sensing platform using the loop-mediated isothermal amplification (LAMP) technique (LAMP-PEC). An amino (-NH2)-modified LAMP product is obtained by amplification of the PED virus gene with specially designed primers. The generated NH2-modified LAMP product is assembled on the surface of an electrode by forming imine linkages between aldehyde and amino groups based on the Schiff base reaction. A stable photocurrent is provided by a CdIn2S4 photoactive material, which possesses high photoelectric conversion efficiency. Amplified DNA assembled on the electrode surface increases steric hindrance and hinders electrons from moving from the electrode to electron acceptors, which decreases the photocurrent. This strategy can detect PEDV with a low detection limit of 0.3 fg µL-1 and a wide linear range of 1 × 10-3-1 × 102 pg/µL. The sensing platform has excellent specificity and sensitivity and can be used for the quantitative detection of many other pathogens with the assistance of LAMP.


Asunto(s)
ADN , Técnicas de Amplificación de Ácido Nucleico , Animales , Porcinos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular
20.
Se Pu ; 40(9): 773-781, 2022 Sep.
Artículo en Chino | MEDLINE | ID: covidwho-2311856

RESUMEN

The rapid global spread of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has introduced various challenges in global public health systems. The poor applicability and sensitivity of the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and antigen-based tests, as well as the persistent emergence of SARS-CoV-2 variants with different mutations hinder satisfactory epidemic prevention and control. Therefore, there is an urgent need for diagnostic technologies capable of distinguishing SARS-CoV-2 variants with high sensitivity and low (or no) equipment dependence. Diagnosis based on clustered regularly interspaced short palindromic repeats (CRISPR) has low equipment requirements and is programmable, sensitive, and easy to use. Various nucleic acid detection tools with great clinical potential have been developed for the diagnosis of infectious diseases. Therefore, this review focuses on the reported state-of-the-art CRISPR diagnostic technologies developed for the detection and differentiation of SARS-CoV-2 variants, summarizes their characteristics and provides an outlook for their development.


Asunto(s)
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA